In Special Relativity, velocities do not add linearly as they do in Galilean physics. Instead, the combination of velocities must preserve the invariance of the speed of light, as encoded in the Lorentz transformations .
Consider two inertial frames:
Frame S SS : the "lab frame," with respect to which we will compute observed velocities.
Frame S ′ S′S ′ : moving at constant velocity v vv along the x xx -axis relative to S SS .
An object moves with velocity components (u x ′ u'_xu x ′ ,u y ′ u'_yu y ′ ,u z ′ u'_zu z ′ ) in frame S ′ S′S ′ .
We wish to compute its velocity components (u x u_xu x ,u y u_yu y ,u z u_zu z ) in frame S SS .
Velocity components are defined as:
u x = d x d t , u y = d y d t , u z = d z d t u_x = \frac{dx}{dt}, \quad u_y = \frac{dy}{dt}, \quad u_z = \frac{dz}{dt}
u x = d t d x , u y = d t d y , u z = d t d z
u x ′ = d x ′ d t ′ , u y ′ = d y ′ d t ′ , u z ′ = d z ′ d t ′ u'_x = \frac{dx'}{dt'}, \quad u'_y = \frac{dy'}{dt'}, \quad u'_z = \frac{dz'}{dt'}
u x ′ = d t ′ d x ′ , u y ′ = d t ′ d y ′ , u z ′ = d t ′ d z ′
Our goal is to express ( u x , u y , u z ) (u_x, u_y, u_z)( u x , u y , u z ) in terms of ( u x ′ , u y ′ , u z ′ ) (u'_x, u'_y, u'_z)( u x ′ , u y ′ , u z ′ ) and the frame velocity v vv .
The Lorentz transformations for a boost along the x xx -axis are:
t = γ ( t ′ + v x ′ c 2 ) x = γ ( x ′ + v t ′ ) y = y ′ z = z ′ \begin{aligned}
t &= \gamma \left( t' + \frac{v x'}{c^2} \right) \\
x &= \gamma (x' + v t') \\
y &= y' \\
z &= z'
\end{aligned}
t x y z = γ ( t ′ + c 2 v x ′ ) = γ ( x ′ + v t ′ ) = y ′ = z ′
where:
γ v = 1 1 − v 2 c 2 \gamma_v = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}
γ v = 1 − c 2 v 2 1
The Lorentz factor γ v \gamma_vγ v here depends only on the frame velocity v vv , not on the particle velocity u uu .
Differentiate the transformations:
d x = γ v ( d x ′ + v d t ′ ) dx = \gamma_v (dx' + v \, dt')
d x = γ v ( d x ′ + v d t ′ )
d t = γ v ( d t ′ + v c 2 d x ′ ) dt = \gamma_v \left( dt' + \frac{v}{c^2} dx' \right)
d t = γ v ( d t ′ + c 2 v d x ′ )
Now compute:
u x = d x d t = d x ′ + v d t ′ d t ′ + v c 2 d x ′ u_x = \frac{dx}{dt} = \frac{ dx' + v \, dt' }{ dt' + \frac{v}{c^2} dx' }
u x = d t d x = d t ′ + c 2 v d x ′ d x ′ + v d t ′
Divide numerator and denominator by d t ′ dt'd t ′ :
u x = u x ′ + v 1 + v u x ′ c 2 u_x = \frac{ u'_x + v }{ 1 + \frac{v u'_x}{c^2} }
u x = 1 + c 2 v u x ′ u x ′ + v
Since y = y ′ y = y'y = y ′ , z = z ′ z = z'z = z ′ :
d y = d y ′ , d z = d z ′ dy = dy', \quad dz = dz'
d y = d y ′ , d z = d z ′
But time is transformed:
d t = γ v ( d t ′ + v c 2 d x ′ ) dt = \gamma_v \left( dt' + \frac{v}{c^2} dx' \right)
d t = γ v ( d t ′ + c 2 v d x ′ )
Thus:
u y = u y ′ γ v ( 1 + v u x ′ c 2 ) u_y = \frac{ u'_y }{ \gamma_v \left( 1 + \frac{v u'_x}{c^2} \right) }
u y = γ v ( 1 + c 2 v u x ′ ) u y ′
u z = u z ′ γ v ( 1 + v u x ′ c 2 ) u_z = \frac{ u'_z }{ \gamma_v \left( 1 + \frac{v u'_x}{c^2} \right) }
u z = γ v ( 1 + c 2 v u x ′ ) u z ′
Longitudinal component (parallel to v vv ):
u x = u x ′ + v 1 + v u x ′ c 2 \boxed{ u_x = \frac{ u'_x + v }{ 1 + \frac{v u'_x}{c^2} } }
u x = 1 + c 2 v u x ′ u x ′ + v
Transverse components (perpendicular to v vv ):
u y = u y ′ γ v ( 1 + v u x ′ c 2 ) \boxed{ u_y = \frac{ u'_y }{ \gamma_v \left( 1 + \frac{v u'_x}{c^2} \right) } }
u y = γ v ( 1 + c 2 v u x ′ ) u y ′
u z = u z ′ γ v ( 1 + v u x ′ c 2 ) \boxed{ u_z = \frac{ u'_z }{ \gamma_v \left( 1 + \frac{v u'_x}{c^2} \right) } }
u z = γ v ( 1 + c 2 v u x ′ ) u z ′
We can express this result in matrix form by defining:
u ′ = ( u x ′ u y ′ u z ′ ) , u = ( u x u y u z ) \mathbf{u}' =
\begin{pmatrix}
u'_x \\
u'_y \\
u'_z
\end{pmatrix}, \quad
\mathbf{u} =
\begin{pmatrix}
u_x \\
u_y \\
u_z
\end{pmatrix}
u ′ = ⎝ ⎛ u x ′ u y ′ u z ′ ⎠ ⎞ , u = ⎝ ⎛ u x u y u z ⎠ ⎞
Then, the velocity addition is (not so nicely) represented as:
u = 1 D ( u x ′ + v u y ′ γ v u z ′ γ v ) , D = 1 + v u x ′ c 2 \mathbf{u} =
\frac{1}{ D }
\begin{pmatrix}
u'_x + v \\
\frac{u'_y}{\gamma_v} \\
\frac{u'_z}{\gamma_v}
\end{pmatrix}, \quad D = 1 + \frac{v u'_x}{c^2}
u = D 1 ⎝ ⎜ ⎜ ⎛ u x ′ + v γ v u y ′ γ v u z ′ ⎠ ⎟ ⎟ ⎞ , D = 1 + c 2 v u x ′
There are two distinct Lorentz factors that commonly appear in relativistic kinematics:
γ v \gamma_vγ v — associated with the frame boost velocity v vv .
Appears in the Lorentz transformations and in the transverse velocity addition formula.
In this page, all γ \gammaγ factors refer to γ v \gamma_vγ v .
γ u \gamma_uγ u — associated with the object's velocity u uu .
Appears when computing energy and momentum of a particle.
Not directly involved in the velocity addition formulas derived here.
Example: Plasma Blob in an AGN Accretion Disk Wind
Consider a relativistic plasma blob ejected from an AGN accretion disk wind .
Assume:
The wind frame S ′ S'S ′ moves at v = 0.6 c v = 0.6cv = 0 . 6 c relative to the observer.
In S ′ S'S ′ , the blob moves at:
u x ′ = 0.3 c u'_x = 0.3cu x ′ = 0 . 3 c
u y ′ = 0.5 c u'_y = 0.5cu y ′ = 0 . 5 c
u z ′ = 0 u'_z = 0u z ′ = 0
γ v = 1 1 − ( 0.6 ) 2 = 1 0.64 = 1 0.8 = 1.25 \gamma_v = \frac{1}{\sqrt{1 - (0.6)^2}} = \frac{1}{\sqrt{0.64}} = \frac{1}{0.8} = 1.25
γ v = 1 − ( 0 . 6 ) 2 1 = 0 . 6 4 1 = 0 . 8 1 = 1 . 2 5
u x = 0.3 c + 0.6 c 1 + ( 0.6 ) ( 0.3 ) 1 = 0.9 c 1 + 0.18 = 0.9 c 1.18 ≈ 0.763 c u_x = \frac{ 0.3c + 0.6c }{ 1 + \frac{(0.6)(0.3)}{1} } = \frac{ 0.9c }{ 1 + 0.18 } = \frac{0.9c}{1.18} \approx 0.763c
u x = 1 + 1 ( 0 . 6 ) ( 0 . 3 ) 0 . 3 c + 0 . 6 c = 1 + 0 . 1 8 0 . 9 c = 1 . 1 8 0 . 9 c ≈ 0 . 7 6 3 c
u y = 0.5 c 1.25 × ( 1 + 0.18 ) = 0.5 c 1.25 × 1.18 = 0.5 c 1.475 ≈ 0.339 c u_y = \frac{ 0.5c }{ 1.25 \times (1 + 0.18) } = \frac{ 0.5c }{ 1.25 \times 1.18 } = \frac{ 0.5c }{1.475} \approx 0.339c
u y = 1 . 2 5 × ( 1 + 0 . 1 8 ) 0 . 5 c = 1 . 2 5 × 1 . 1 8 0 . 5 c = 1 . 4 7 5 0 . 5 c ≈ 0 . 3 3 9 c
The longitudinal velocity u x u_xu x is boosted — approaching c cc but never exceeding it.
The transverse velocity u y u_yu y is reduced due to both:
Time dilation (factor γ v \gamma_vγ v )
Relativity of simultaneity (factor 1 + v u x ′ / c 2 1 + v u'_x / c^21 + v u x ′ / c 2 )
Consequences in AGN physics:
Transverse plasma motions in disk winds and jets appear slowed to the observer.
Apparent superluminal motion in jets arises when u x u_xu x is large and viewing angles are small — a topic covered in a dedicated section.
Relativistic velocity addition arises directly from Lorentz transformations.
The longitudinal and transverse components transform differently.
The Lorentz factor γ v \gamma_vγ v always depends on the frame velocity v vv , not on the particle velocity u uu .
The matrix form reveals the anisotropic nature of the transformation.
These results are essential for understanding the kinematics of relativistic outflows in AGN and black hole environments.
Rindler, W. Introduction to Special Relativity
Jackson, J.D. Classical Electrodynamics , Chapter 11
Urry & Padovani (1995), Unified Schemes for Radio-Loud AGN
Blandford & Königl (1979), Relativistic Jets as Compact Radio Sources